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Abstract— The widespread availability of remotely sensed
datasets establishes a cornerstone for comprehensive image
retrieval within the realm of remote sensing (RS). In response,
the investigation into hashing-driven retrieval methods garners
significance, enabling proficient image acquisition within such
extensive data magnitudes. Nevertheless, the used datasets in
practical applications are invariably less desirable and with
long-tailed distribution. The primary hurdle pertains to the
substantial discrepancy in class volumes. Moreover, commonly
utilized RS datasets for hashing tasks encompass approximately
two–three dozen classes. However, real-world datasets exhibit
a randomized number of classes, introducing a challenging
variability. This article proposes a new centripetal intensive
attention hashing (CIAH) mechanism based on intensive attention
features for long-tailed distribution RS image retrieval. Specifi-
cally, an intensive attention module (IAM) is adopted to enhance
the significant features to facilitate the subsequent generation of
representative hash codes. Furthermore, to deal with the inherent
imbalance of long-tailed distributed datasets, the utilization of a
centripetal loss function is introduced. This endeavor constitutes
the inaugural effort toward long-tailed distributed RS image
retrieval. In pursuit of this objective, a collection of long-tail
datasets is meticulously curated using four widely recognized RS
datasets, subsequently disseminated as benchmark datasets. The
selected fundamental datasets contain 7, 25, 38, and 45 land-
use classes to mimic different real RS datasets. Conducted
experiments demonstrate that the proposed methodology attains
a performance benchmark that surpasses currently existing
methodologies.

Index Terms— Attention mechanisms, centripetal loss, hashing,
long-tailed remote sensing (RS), RS image retrieval.
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I. INTRODUCTION

DUE to the rapid development of remote sensing (RS)
technology in recent years, the volume of information has

expanded dramatically. The intensification of data acquisition
missions significantly impacts the surge in data volume [1],
[2], [3]. Obtained images are procured through a diverse array
of modalities, including optical images (OIs), as well as multi-
spectral (MSIs) and hyperspectral (HSIs) scenes. These images
have transcended their role to become indispensable tools
within a large range of disciplines. Particularly, they assume
a central role in disaster response and recovery operations,
urban planning, or land-use analysis. In the realm of disaster
response, RS imagery bestows crucial insights essential for
evaluating and managing catastrophic situations [4], [5], [6].
In urban planning, this imagery provides decision-makers
with invaluable data to foster sustainable urban develop-
ment and optimize infrastructural configurations [7], [8], [9].
In the context of land-use analysis, these data substantially
contribute to the elucidation of patterns, thereby amplifying
endeavors related to resource management and environmental
monitoring [10], [11], [12]. A plethora of applications and
tasks derive benefits from extensive and information-rich RS
databases. Within the framework of image retrieval, an impera-
tive challenge arises: the adept and efficient retrieval of images
pertinent to a specific situation. In the event of disasters,
fast retrieval of required images from real-time acquisitions is
paramount for swift disaster rescue operations. Indeed, through
the analysis of images depicting disaster scenes, rescuers can
formulate timely and precise rescue strategies. In this context,
the methodology of hashing has attracted the attention of
scientific researchers around the world.

In this regard, hashing is a conventional retrieval technique
expounded in relevant literature [13], [14], [15], [16], [17].
It involves the quantization of initial data into a binary code of
fixed length, denoted as a hash code. The objective underlying
hashing techniques reside in the utilization of low-dimensional
hash codes instead of the original data. Thus, the fundamental
principle revolves around preserving a consistent approxima-
tion of the near-neighbor relationships between the initial data
and its corresponding representation across distinct spaces.
In other words, the near neighboring data in the original spatial
space after quantization also maintain the near neighboring
relationship in the Hamming space and vice versa. An effective
hashing scheme is characterized by the generation of hash
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Fig. 1. Example of a long-tailed distribution of samples in a dataset with
40 classes. All classes can be evenly divided into head class, middle class,
and tail class. A few head classes occupy most of the samples in the whole
dataset. Meanwhile, a larger number of middle and tail classes occupy only
a small number of samples.

codes that encapsulate a substantial portion of the essential
information present in the original data, i.e., features, while
concurrently upholding discriminative attributes. As a con-
sequence, hash codes occupy less memory than the original
data. Furthermore, the Hamming distance between hash codes
can be quickly obtained by simple matrix operations when
performing retrieval. With the benefit of low storage and fast
computation, hashing has been extensively exploited in the RS
image retrieval field [18], [19], [20], [21], [22].

A. RS Hashing: Methods and Boundaries

Consistent with diverse methods of feature extraction, hash
techniques can be categorized into shallow and deep hash-
ing. The former refers to the feature extraction of original
data using traditional feature extractors, e.g., SIFT [23] or
GIST [24]. In such methods, the predesigned hash function
is utilized to map the extracted shallow features into hash
codes. There are several studies that have been devoted to
introduce shallow hashing to the RS image retrieval com-
munity. For instance, Demir and Bruzzone [25] introduce
two kernel-based nonlinear hashing methods (unlabeled and
labeled) into RS image retrieval to speed up the retrieval pro-
cess. Conversely, an alternative investigation [26] introduces a
partially random hash approach that enhances the efficiency
of hash function construction. This procedure involves the
random initialization of specific hash learning parameters,
while the remaining parameters are derived through data-
driven learning. In addition, Reato et al. [27] extract feature
clusters of RS images and generate unique hash codes for
each individual cluster. In this regard, employing multiple hash
codes for image representation contributes to an improvement
in the accuracy of retrieval outcomes. Finally, Fernandez-
Beltran et al. [28] propose a probabilistic latent semantic
model to mine the potential semantic information of RS
images while preserving the information within the hash
code. Notwithstanding the structural simplicity and rapid
execution, the efficacy of shallow hashing is constrained by
the capabilities of conventional feature extractors, leading to
unsatisfactory retrieval.

The remarkable feature extraction capabilities demonstrated
by deep learning [29], [30], [31], [32], [33] have prompted

a growing interest in deep-learning-based hashing, i.e., deep
hashing. Thus, some efforts have been conducted to incorpo-
rate these methodologies into the field of RS image retrieval.
Concretely, Li et al. [34] delve into the feasibility of deep
hashing, yielding superior performance. Liu et al. [35] aim to
integrate the multiscale features and use the attention map
to increase the retrieval precision. Song et al. [36] propose a
novel hashing model that integrates both hashing and classi-
fication loss functions for simultaneous model optimization.
As a novelty, Song et al. [37] introduce an asymmetrical
approach to hash code learning. This methodology employs
distinct hashing methods to generate hash codes for queries
and database entries, respectively. The objective is to retain a
significant portion of the fundamental information through-
out this process. Additionally, numerous studies have been
conducted on the basis of fast hashing retrieval advantages.
Concretely, the investigation [38] involves the quantification of
local patches within extensive RS images into hash codes. This
methodology enables a fast target localization in large-scale
scenes. Similarly, Han et al. [39] design an encryption scheme
based on hashing to counteract RS image target localization.

Although the aforementioned deep hashing approaches have
demonstrated satisfactory retrieval capabilities, existing image
hashing methods are based on predesigned RS datasets. This
fact refers to a dataset in which the classes and the samples
contained in each class are preset to an optimal state, e.g.,
the classes are set to be between 20 and 30, and the number
of samples in each class is approximately balanced. However,
the distribution inherent to actual real-world scenarios does not
align with these ideal expectations, quite the contrary. This is
shown in Fig. 1 for a long-tailed class distribution.

B. Problem Description

The abundance of existing RS image data, particularly in
optical imagery, offers a robust foundation for the pursuit
of large-scale image retrieval within the ambit of Big Data.
Nonetheless, real-world optical RS databases encounter a
significant challenge stemming from imbalanced class data.
The notion of imbalance pertains to the disparate distribution
of samples among classes, leading to uneven quantities for
each. For instance, within a database containing urban scenes,
the count of building samples markedly surpasses the greenery
samples. Conversely, in the countryside, the prevalence of
farmland samples outweighs that of residential housing sam-
ples. Regrettably, the majority of prevailing RS image retrieval
studies are conducted under the assumption of an ideal state,
wherein the volume of data for each class is either equivalent
or closely matched. However, achieving such conditions in
real-world applications presents considerable challenges.

Remotely sensed data manifest a long-tailed class distribu-
tion, a characteristic extensively discussed in [40], [41], [42],
and [43], where a limited set of sample classes dominates the
dataset capacity, and the remaining large number of classes
occupy only a small amount. In conjunction with this chal-
lenge, the majority of prevailing deep hashing methodologies
are trained utilizing the tuple similarity loss function. This
loss function is based on a set of samples and the similarity
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Fig. 2. Unbalanced long-tailed dataset. Stars denote one sample, dots with
the same color (red) denote samples belonging to the same class, and different
colors (blue) denote samples belonging to different classes. Within the head
class, a sample is characterized by a profusion of positive instances. In the
intermediate class, a sufficient number of positive instances is observed.
Conversely, the tail class is marked by a scarcity of positive instances for
a given sample.

relationship between them. During the training process, the
network receives input in the form of tuple samples and
subsequently generates hash codes that are strategically posi-
tioned in proximity from each other, guided by the underlying
similarity relationship. However, in long-tailed distributed
datasets, the number of similar samples in the middle and
tail classes is significantly less than the number of dissimilar
samples, as shown in Fig. 2. This causes that the samples
in the middle and tail classes have minimal contribution to
the model parameters during training. The models concentrate
their attention on the head class samples, thus leading to the
attenuation of the overall performance. Unfortunately, with
such a realistic issue, no antecedent research endeavors have
been undertaken in the field of RS for long-tailed distributed
image retrieval.

C. Novel Solution: CIAH

In response to the existing research gap and with the goal
of enhancing the applicability of RS hashing within real-
world scenarios, a novel methodology is introduced, i.e.,
the “centripetal intensive attention hashing” (CIAH). The
proposed model addresses the need for efficient retrieval of
long-tailed RS image datasets. Initially, an intensive attention
module (IAM) is incorporated to enhance preextracted fea-
tures, thereby retaining essential information. Subsequently,
to mitigate the challenges arising from the pronounced class
imbalance inherent to long-tailed data, a centripetal loss func-
tion is employed to optimize the model. The hash code of
each sample is as close as possible to its predefined hash
code center. Hence, there is no consideration of the imbalance
between the number of similar and dissimilar sample tuples
during training. Conclusively, the absence of datasets tailored
for the retrieval of long-tailed distributed RS images stems
from the lack of attention directed toward this specific task.
In light of this, an initiative is undertaken to create a collec-
tion of long-tailed RS datasets encompassing three shrinkage
scales. These datasets are derived from four widely recognized
RS datasets, resulting in a total of 12 distinct datasets. This
compilation stands as a benchmark resource.

D. Contributions of This Work

The primary innovative facets of this article are summarized
through the presentation of the following contributions.

1) To the best of authors’ knowledge, this work repre-
sents the first attempt in the RS community to address
long-tailed distributed datasets, aiming to produce an
image retrieval experimental environment that closely
mirrors real-world conditions.

2) In order to mitigate the problems posed by data imbal-
ance, two strategies are implemented. First, an IAM is
exploited to enhance the features. Second, the proposed
model is optimized using a centripetal loss function.
These two tactics significantly improve the proposal to
effectively exploit the long-tailed distributed RS image
retrieval.

3) A comprehensive collection of long-tailed RS datasets
is established, leveraging four prominent datasets with
three different shrinkage scales. To foster further explo-
ration in this research domain, these datasets are made
publicly accessible, thereby serving as a benchmark
resource for the corresponding task.

The remainder of this article is organized as follows.
Section II describes the designed methodology, including the
IAM and the centripetal loss function. Section III explains
the environment and the experimental setting. In addition,
it provides the experimental results and the analysis. Finally,
Section IV summarizes the contributions and findings of this
article.

II. METHODOLOGY: CIAH

The initial phase involves the modeling of the hashing
process, elucidating the essential import of primary symbols
and functions. Subsequently, the architecture of the proposed
CIAH is expounded upon. This is followed by the introduction
of the intensive attention model. Lastly, a comprehensive
elucidation of the centripetal loss function is provided.

A. Hash Modeling

The image dataset is defined as X D fx1; x2; : : : ; xngNnD1,
and its corresponding label set and hash code set are L D
fl1; l2; : : : ; lngNnD1 and H D fh1; h2; : : : ; hngNnD1, respectively,
where N denotes the number of samples. In ln 2 f1; 2; : : : ;Cg,
C is the number of classes, while in hn 2 f0; 1gK , K is the
hash code length. As the number of samples in each class in
the long-tailed dataset is inconsistent, the volume of samples
in each class is denoted by r D fr1; r2; : : : ; rCg. Among
these, r1 represents the highest count of samples allocated to
the initial class, with the numbers of samples progressively
decreasing across the remaining classes. The first third of the
classes is defined as the head class, the middle third as the
middle class, and the last third as the tail class. The setting
of r will be described in detail in the dataset description in
future experiments.

In this context, the proposed CIAH has four components: 1)
feature extraction backbone F�.�/; 2) IAM M�m .�/; 3) hash
learning layer M�h .�/; and 4) classifier layer M�c.�/. These
four components are illustrated in Fig. 3. The � represents
the model parameters. The overall network can be regarded as
a hash function H.�/, indeed. Thus, the process of hash code
learning is denoted by H D H.X/.
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Fig. 3. Flowchart of the proposed CIAH. The proposed model consists of four parts: a backbone, an IAM, a hash learning layer, and a classifier layer.
Specifically, the backbone is engaged for the extraction of features, while the IAM serves to enhance these features. The hash learning and the classifier layers
are responsible for generating hash codes and producing classification outcomes, respectively.

B. Delving Into the Architectural Design of CIAH

The subsequent stage involves the elucidation of the struc-
ture and operational attributes pertaining to the aforementioned
four components within the architectural framework of CIAH.
Moreover, a backbone is employed to extract preliminary
features, with these features denoted as d . To expedite and
optimize the feature extraction process, the widely utilized
ResNet-34 architecture [44] is adopted as the backbone net-
work given its shallow architecture and remarkable proficiency.
Then, the IAM is introduced to enhance the preliminary
extracted features, which are used for subsequent hash code
learning and classification. Both the hash and classifier layers
contain a fully connected layer and a tanh activation function.
The hash layer generates hash codes from the enhanced
features. Then, the hash codes are used as inputs to the
classifier layer, the outputs of which are classification results.
Therefore, the generation of hash codes is constrained by both
the hashing task and the classification task.

Given the significant class imbalance inherent to the long-
tailed dataset, the trained model tends to prioritize the
head category, while relatively neglecting the tail category.
To address this limitation, two strategies are implemented:
1) the IAM module and 2) a centripetal loss function. In this
context, the IAM enhances the preliminary features obtained,
and the centripetal loss function is used to increase the
importance of the tail classes during training. These strategies
are further elucidated in the subsequent stages.

C. Intensive Attention Mode

Hashing is dedicated to quantize high-dimensional data into
a low-dimensional hash code. During retrieval, the hash code
replaces the original data to perform the retrieval. Evidently,
information loss during the dimensionality reduction process
is an inherent phenomenon. To bring the hash code in closer
alignment with the original data, the initial step entails acquir-
ing features that encapsulate more information. Consequently,
the IAM proposal is introduced to amplify these features,
as illustrated in Fig. 4.

Fig. 4. IAM.

First, the preliminary features d extracted by the backbone
are input to the IAM to produce the output enhanced fea-
tures d f3 . The IAM consists of three fully connected layers
( f1, f2, and f3) and their corresponding weights (W1 D
R‘d�‘d f1 , W2 D R‘d�‘d f2 , and W3 D R‘d
 �‘d f3 ). Identify
d f1 , d f2 , and d f3 as the output features of f1, f2, and f3,
respectively, and ‘d , ‘d f1

, ‘d f2
, and ‘d f3

as the dimensions of
feature d, d f1 , d f2 , and d f3 , respectively. Also, 
 indicates the
attention parameter, d
 is the feature added to the attention,
and ‘d
 represents the dimension of d
 . Simultaneously, f1 and
f2 have the same output length. Therefore, d f1 and d f2 can be
formulated as shown in the following equationV

d f1 D dW1; d f2 D dW2: (1)

In the initial state, f1 and f2 share the same parameters,
and thus, d f1 and d f2 are the same at this stage. In this
situation, tanh is set as the activation function for d f1 and d f2 .
Concretely, for the hashing task, the preferred operation is to
turn d f1 and d f2 into binary vectors using the sign function.
Nevertheless, the involvement of the sign function within
the network back-propagation process tends to accentuate the

Authorized licensed use limited to: Universidad Nac de Educación a Distancia (UNED). Downloaded on November 06,2024 at 17:00:41 UTC from IEEE Xplore.  Restrictions apply. 



HAN et al.: HASHING FOR RETRIEVING LONG-TAILED DISTRIBUTED RS IMAGES 5608914

attention, thereby potentially neglecting the middle attention
weights. After that, the activated binary-like features b1 and
b2 are multiplied to obtain the attention parameter 
 , as shown
in the following equationsV

b1 D tanh
�
d f1

�
; b2 D tanh

�
d f2

�
(2a)


 D b1b2: (2b)

Then, d
1 and d
2 are obtained by adding attention parameter

 to d f1 and d f2 . Finally, d
1 and d
2 are concatenated to
generate the enhanced feature d
 , in accordance with the
formulation of the following equationV

d
 D concat
�
d
1 ; d
2

�
: (3)

The concat notation refers to the concatenate operation.
Finally, a fully connected layer f3 is added in the following
equation to generate the output of IAMV

d f3 D d
W3: (4)

The influence attributed to the newly introduced attention
parameter 
 is clarified through the following elucidation.
Given the initial configuration (where parameters for f1 and
f2 are shared), the similarity between d f1 and d f2 remains
consistent throughout the training process. This results in the
values of b1 and b2 having the same sign at most positions.
Therefore, the values of 
 are majority positive and few values
are negative. In summary, 
 increases the attention to features
with the same sign, facilitating the subsequent generation of
discriminative hash codes.

D. Centripetal Loss Function

In the context of existing deep hashing methodologies,
the prevailing approach involves the training of models
through the utilization of a tuple similarity loss function.
This loss function integrates multiple samples (along with
their respective similarity relationships) as essential inputs.
The overarching objective is to minimize the distance between
hash codes of similar samples, while maximizing the distance
between hash codes of dissimilar samples. Concretely, pair-
wise loss and triplet loss are popular tuple similarity losses.
The former takes two samples as a group and sets their
relationship as similar or dissimilar, and the latter delves into
the systematic organization of three distinct samples within
a group, encompassing the samples themselves, the samples
that exhibit positive correlation, i.e., similarity, and those
that demonstrate negative correlation, i.e., dissimilarity. Unlike
pairwise loss, triplet loss considers both the distance of similar
hash codes and dissimilar hash codes.

Nevertheless, the tuple similarity loss function is not appli-
cable in long-tailed distribution datasets due to the limited
presence of similar samples within the middle and tail class
samples. Thus, this discrepancy induces an imbalance during
the training process, prompting the model to disproportionately
prioritize the head classes.

To address this limitation, a loss function based on the
predetermined hash code center is proposed. This approach,
known as the centripetal loss, aims to cluster the hash codes
of all samples around this designated center [45]. Centripetal

Algorithm 1 Pseudo-Code of the CIAH Training Process
Input: A pre-trained feature extraction backbone with param-

eters F�.�/, A training image dataset with N samples xn ,
hyperparameter 
 , W1, W2 and W3 in the IAM M�m .�/,
hash learning layer M�h .�/, classifier layer M�c.�/.

Output: The proposed CIAH model.
1: for n D 1 to N do
2: d D F�.xn/
3: d
 = M�m .d/
4: hn DM�h .d
 /
5: end for
6: Compute the hash code center of each class
fho

1; ho
2; : : : ; ho

ng
7: for each batch X do
8: d f1 D W1X , d f2 D W2X
9: b1 D tanh.d f1/; b2 D tanh.d f2/

10: 
 D b1 � b2
11: d
 D concat.d
1 ; d
2/
12: d f3 D d
W3
13: hX DM�h .d f3/
14: Oy D softmaxM�c.hX /
15: Compute LC1 and LC2

16: L D LC1 C �LC2.Ol; l/
17: Optimizing the network parameters based on L
18: end for
19: return CIAH

loss simply serves to concentrate on the compactness of the
samples in relation to their corresponding centers, notably
alleviating the imbalance caused by tuple loss. First, the
process defines the center of the predetermined hash code,
as outlined in the following equation:

ho
i D

1
ri

riX

nD1

hn: (5)

Here, ho
i represents the center of the i th class, and ri

indicates the volume of samples belonging to this class.
Additionally, hn refers to the hash code obtained without
training, solely relying on the pretrained model. Then, the hash
code center set Ho D fho

1; ho
2; : : : ; ho

Cg is obtained.
Consequently, the adopted hash center encompasses the

original features of the data. During training, the objective
is for the hash code of each sample to approximate its cor-
responding class center as closely as possible. The Hamming
distance between the hash code hn and its corresponding class
center ho

i is mathematically represented by the following
equationV

D
�
hn; ho

i� D
1
2

�
K � hn

Tho
i�: (6)

However, given that the Hamming distance is not differ-
entiable, an alternative approach becomes necessary. In this
regard, the cosine distance is proposed. The calculation of the
cosine distance between two hash vectors hn and hm can be
represented through the following equationV

cos �nm D
hn

Thm

jjhnjj � jjhm jj
: (7)
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Fig. 5. Representative samples of RSSCN7, CLRS, PatternNet, and NWPURESISC45 datasets.

Fig. 6. Class data distribution of the produced long-tail RS dataset.
(a) RSSCN7 dataset. (b) CLRS dataset. (c) PatternNet dataset. (d) NWPURE-
SISC45 dataset.

Since the cosine distance is differentiable and inversely
proportional to the Hamming distance, the centripetal loss LC1

is shown as followsV

LC1 D � log
exp
�
@2


hn; ho

i��
P

j21;C; j 6Di exp
�
@2


hn; ho

i�� (8)

where 2h�i denotes the cosine distance, and @ signifies the
relevant importance parameters. As depicted in (8), it becomes
evident that the centripetal loss enforces the proximity of hash
codes to the corresponding centers. In conjunction with the
centripetal loss, an additional classification loss is incorporated
to generate more discriminative hash codes. As such, the
comprehensive loss function L governing the entire network
is defined through the expression presented in the following
equationV

L D LC1 C �LC2

�Ol; l
�
: (9)

The LC2 represents the classification loss, Ol denotes the pre-
dicted label, and � is the weight parameter. By optimizing (9),
the CIAH is trained to produce discriminative hash codes.
In order to demonstrate CIAH clearly, Algorithm 1 provides
the pseudo-code of the CIAH training process.

III. EXPERIMENTAL RESULTS

A. Datasets Description

To the best of authors’ knowledge, no publicly available
long-tail RS dataset has been established previously. There-
fore, several long-tail RS datasets have been designed, drawing
from four widely used classical RS datasets.

1) RSSCN7: The RSSCN7 dataset [46] was collected from
Google Earth and released in 2015. It contains 2800 OIs
of seven representative land-use classes, including grassland,
forest, farmland, parking lot, residential area, industrial area,
and river and lake. Each of these classes contains 400 images,
all with 400 � 400 pixels. These samples are sampled
based on four different shrinkage scales, with a resolution
of 2.7–20 m.

2) CLRS: The CLRS dataset [47] was collected from
Google Earth, BingMap, GoogleMap, and Tiand and released
in 2020. It includes 25 land-use classes with 600 images per
class, for a total of 15 000 OIs. Each image has a size of 256 �
256 pixels and a resolution of 0.26–8.85 m.

3) PatternNet: The PatternNet dataset [48] was collected
from Google Earth, too, and published by Wuhan Univer-
sity, Wuhan, China, in 2017. It includes 38 commonly used
land-use classes with 800 OIs per class, for a total of
30 400 samples. The size of each image is 256 � 256 pixels,
and the resolution is 0.06–4.7 m.

4) NWPURESISC45: The NWPURESISC45 dataset [49]
was created by Northwestern Polytechnic University, Xi’an,
Shaanxi, China, in 2016 based on Google Maps imagery.
It contains a total of 31 500 images of 256 � 256 pixels,
covering 45 classes with 700 images per class and resolution
of 0.2–3 m.
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TABLE I
SAMPLE VOLUMES OF THE TEST AND TRAINING SETS FOR

FOUR LONG-TAIL RS DATASETS (RSSCN7, CLRS,
PATTERNNET, AND NWPURESISC45)

Fig. 5 shows some representative samples of the above four
RS datasets. In order to delve into the retrieval of long-tailed
distributed RS images, three distinct datasets (each exhibiting
varying levels of shrinkage) have been crafted for every RS
dataset, in accordance with the following equationV

Ti D

(
max; i D 1
max �IF

i
C ; i D 2; : : : ;C

(10)

where Ti denotes the sample number of the i th class, max
and min denote the maximum and minimum volumes of
the number of samples from each class, respectively, and
IF represents the shrinkage scale, which is defined as IF D
.min =max/ and takes values of 0.1, 0.05, and 0.01. The
class data distribution of the produced long-tail RS dataset
is shown in Fig. 6. From now on, a designated long-tailed RS
dataset is denoted as: dataset name (IF value), e.g., PatternNet
(IF D 0.01).

The aim is to ensure that all available classes are represented
in the dataset, capturing the diversity of RS image scenarios.
However, tail classes may have fewer samples than head
classes due to the inherent characteristics of the long-tailed
distribution. To ensure fairness and reduce bias in the dataset
creation process, random sampling techniques are adopted.
This entailed randomly selecting samples within each class
to establish a representative long-tailed distribution. Since the
volume of each long-tail dataset is different, the volumes of the
test and training sets for each dataset are provided in Table I.
Furthermore, the above long-tail data named LTRSdataset have
been made publicly available.1

B. Experimental Settings

A detailed exposition of the evaluation metrics and parame-
ter settings is presented in the following. Moreover, a diverse
set of well-established evaluation metrics is employed to
comprehensively assess the retrieval efficacy. This underscores
the systematic approach to evaluate the proposed method
and highlights the considerations that parameter adjustments
during experimentation inform.

1https://drive.google.com/file/d/11hFJfBjSkwTQaYzTOdt4i-NiYjqCIhoq/
view?usp=drive_link

1) Evaluation Metrics: The evaluation metrics for hash
retrieval tasks can be categorized into numerical and visual
metrics. Numerical metrics are precision, recall, and mean
average precision (mAP). Meanwhile, visual metrics are the
precision–recall curve and the t-distributed stochastic neighbor
embedding (t-SNE) distribution. Precision, as defined in the
following equation, represents the percentage of correct results
among all retrieved results, denoted as Allresults:

Precision D
True

Allresults
: (11)

On the other hand, recall is defined in the following equation
as the percentage of correct results among all correct results,
denoted as Alltrue:

Recall D
True

Alltrue
: (12)

Finally, the mAP can be calculated as shown in the follow-
ing equationV

mAP D
1
Q

QX

qD1

1
R

RX

rD1

Precision.r/true.r/ (13)

where Q denotes the number of query samples and R denotes
the number of retrieval results. Precision(r) is the precision of
Top-r, true(r) D 1 when the retrieval result of rank r is correct,
and 0 otherwise. Specifically, mAP is not only concerned with
the precision of retrieval results but is also related to the
order of retrieval. Higher mAP values correspond to accurately
retrieved results with top rankings, while lower values indicate
otherwise. Given the widespread adoption of mAP as a stan-
dard metric, it is exclusively presented as the sole numerical
measure in the forthcoming experimental results. Precision and
recall are visually represented as plotted curves. Moreover,
the precision–recall curve gives a straightforward indication
of the performance of the method. A larger area under this
curve identifies an improved retrieval performance. Finally, t-
SNE (as a visual dimensionality reduction method) reduces
high-dimensional data to two or three dimensions and demon-
strates its approximate nearest-neighbor distances. Since the
central aim of the hashing task revolves around preserving
close hash code proximity for similar samples and ensuring
separation for hash codes of dissimilar samples, t-SNE stands
as a suitable visual evaluation metric for comprehensively
appraising the hashing performance.

2) Hardware and Parameter Settings: The experiments
are conducted using a computer environment with Python
3.7.12 and the PyTorch 1.8.0 framework on a GeForce
GTX 1660 Ti graphics processing unit (GPU). The learning
rate is set to 1e�5; the batch size is 32, and the number of
epochs is 150. The length of the hash code is set to 16, 32, or
64 bits. Finally, the weight parameter � is set to 0.2 according
to the ablation study.

C. Results: Analysis and Discussion

Comparative experiments are conducted between CIAH, six
competitive common hashing methods and three RS hash-
ing methods, as outlined next: 1) deep supervised hashing
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TABLE II
MAP RESULTS ON RSSCN7 LONG-TAILED RS DATASET WITH 16-, 32-, AND 64-BIT CODE LENGTH

TABLE III
MAP RESULTS ON CLRS LONG-TAILED RS DATASET WITH 16-, 32-, AND 64-BIT CODE LENGTH

TABLE IV
MAP RESULTS ON PATTERNNET LONG-TAILED RS DATASET WITH 16-, 32-, AND 64-BIT CODE LENGTH

TABLE V
MAP RESULTS ON NWPURESISC45 LONG-TAILED RS DATASET WITH 16-, 32-, AND 64-BIT CODE LENGTH

(DSH) [50]; 2) deep hashing network (DHN) [51]; 3) Hash-
Net [52]; 4) deep supervised hashing with triplet 930 labels
(DTSH) [53]; 5) deep pairwise-supervised hashing (DPSH)
[54]; 6) central similarity quantization (CSQ) [45]; 7) feature

and hash (FAH) learning [35]; 8) deep hashing convolutional
neural network (DHCNN) [36]; and 9) asymmetric hash code
learning (AHCL) [37]. Among them, DSH, DHN, HashNet,
DTSH, DPSH, and CSQ are representative hashing methods,
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TABLE VI
ABLATION EXPERIMENTS OF THE PROPOSED CIAH WITH DIFFERENT

PARAMETERS �. THE EXPERIMENTS ARE CONDUCTED ON CLRS
(IF D 0.05) WITH 32-BIT CODE LENGTH

TABLE VII
ABLATION EXPERIMENTS OF THE PROPOSED CIAH. THE EXPERIMENTS

ARE CONDUCTED ON CLRS (IF D 0.05) WITH 32-BIT CODE LENGTH

while FAH, DHCNN, and AHCL are competitive RS hashing
methods developed in recent years. While only CSQ uses
center loss, the remaining methods employ tuple similarity
loss. Specifically, DTSH employs triplet loss, while others
use pairwise loss. Although a variety of hash loss functions
are available, pairwise loss is still mainstream. Extensive
comparative experiments are conducted between the reference
methods and the proposed CIAH approach on 12 long-tailed
distribution RS datasets. The results are presented in the form
of both numerical values and visualization figures.

1) Ablation Study and Time Consuming: In the global loss
function, � has a significant impact. The investigation focuses
on examining the effect on mAP when � is set to different
values. Table VI shows the experimental results. According to
it, the overall performance of the CIAH proposal is optimal
when � is set to 0.2. As a result, � is set to 0.2 for all studies.

In addition, the effects of centripetal loss, classification
loss, and the IAM are investigated by evaluating different
combinations of centripetal loss LC1 , classification loss LC2 ,
and IAM. The results are summarized in Table VII. According
to the results, LC2 exerts a substantial effect on performance
improvement. In addition, the inclusion of the IAM produces a
slight increase in mAP. These experimental results support the
favorable effect of each CIAH module on mAP enhancement.

Additionally, the complexity and time consumption of
CIAH are examined. To train the model by minimizing or
maximizing the distance between similar samples or dissim-
ilar samples, traditional pairwise hash loss requires pairwise
combinations of two out of N samples. This operation has
a computational complexity of O.N 2/. In contrast, the cen-
tripetal loss involves only a one-by-one comparison of all
samples with their respective centers, with a computational
cost of O.N /. In terms of the introduced IAM, completely
connected layers, activations, as well as multiplication and
contact operations are employed. In conclusion, the evident
outcome is the substantial boost in retrieval accuracy achieved
by CIAH through the incorporation of subtle parameters.

2) Overall Retrieval Performance: Table II provides the
mAP results on three shrinkage scale long-tailed datasets based
on RSSCN7 with 16, 32, and 64 bits. Based on the obtained
results, the proposed CIAH consistently achieves superior
retrieval outcomes across most scenarios. Although CIAH is
not the best at RSSCN7 (IF D 0.01) with 16 bits and RSSCN7
(IF D 0.05) with 32 bits, it achieves second-best performance
in such cases. In a comprehensive assessment, summarizing
the experimental results for the RSSCN7 dataset presents
notable challenges. The dataset comprises a limited number of
classes, and the samples within each class exhibit considerable
dissimilarity. Consequently, these challenges are transferred
to the model training, such as under-sampling of tail classes
or over-fitting to head classes. Even within these chal-
lenging experimental conditions, CIAH demonstrates notable
performance.

Table III provides the mAP results on three shrinkage scale
long-tailed datasets based on CLRS with 16, 32, and 64 bits.
We observe that our CIAH obtains the best mAP results.
In contrast to the outcomes on the RSSCN7 dataset, the
proposed CIAH exhibits a more pronounced enhancement in
retrieval performance on the CLRS dataset. The average value
of CIAH improved accuracy is 3.64% compared to the second-
best method. This indicates a notable enhancement in terms of
retrieval performance within the realm of RS datasets. In addi-
tion, the 32-bit-length hash code achieves the best retrieval
performance. In the context of hash retrieval, no universally
accepted criterion establishes a direct correlation between the
length of the hash code and the subsequent improvement in
retrieval performance. Therefore, in practical applications, it is
critical to choose the proper length of the hash code.

Table IV provides the mAP results on three shrinkage
scale long-tailed datasets based on PatternNet with 16, 32,
and 64 bits. Similar to the previous dataset, it is observed
that CIAH attains the highest retrieval performance although
the enhancement is slight. The retrieval performance remains
satisfactory across all the methods evaluated. This is due to
the fact that the PatternNet dataset has large interclass differ-
entiation. Although the PatternNet dataset contains 38 classes,
the samples selected in each class have typical features of that
class. In other words, images in the same class have a high
similarity. Therefore, hashing can accurately distinguish the
class to which the samples belong. This phenomenon results
in the less pronounced performance enhancement of novel
methods on this dataset.

Table V provides the mAP results on three shrinkage scale
long-tailed dataset based on NWPURESISC45 with 16, 32,
and 64 bits. The outcomes of the analysis indicate that the
proposed CIAH not only attains the highest mAP results, but
also manifests a substantial enhancement. Concretely, CIAH
achieves an average accuracy improvement of 3.60%. Remark-
ably, within the complex context of the NWPURESISC45
dataset (encompassing 45 distinct land-use classes marked by
pronounced imbalances in terms of sample quantities among
classes), our CIAH model is still able to adapt to such
a sophisticated experimental environment. This noteworthy
performance unfolds despite the challenges posed by the
demanding experimental conditions presented by this dataset.
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Fig. 7. (a) Recall-number, (b) precision-number, and (c) precision–recall curves on RSSCN7 (IF D 0.05) with 32-bit code length.

Fig. 8. (a) Recall-number, (b) precision-number, and (c) precision–recall curves on CLRS (IF D 0.05) with 32-bit code length.

Based on the ensemble of Tables II–V, a comprehensive
analysis of the collective experimental outcomes is presented.
Although there are three different IF values for the long-tailed
distribution dataset, the retrieval performance is not sensitive
to such IF values, except for the RSSCN7 dataset. This is
because the RSSCN7 dataset has not enough samples, and
different IF values have a strong impact on the volume of
the dataset. As the IF value increases, the volume of the
dataset also increases for deep hashing to have enough samples
for hash code learning. In addition to these observations,
it is notable that various loss functions exert an influence on
the retrieval performance. Obviously, centripetal loss is more
capable of generating discriminative hash codes on long-tailed
distribution datasets compared to tuple similarity loss. This
occurrence stems from the effectiveness of the centripetal
loss in addressing the inherent imbalance within long-tailed
distribution datasets. This, in turn, empowers the model to
emphasize the tail classes to a significant degree. Also, CSQ
employs centripetal loss, but the proposed CIAH still achieves
better performance. The first reason is that CIAH uses an
IAM to enhance the original features. This enhances features
of the same symbol using a weight vector. Such operation
facilitates the subsequent generation of discriminative hash
codes. The second is that the hash code centers of CSQ are
created in a hard-line manner, neglecting correlation between
classes. In contrast, the generation of the proposed CIAH hash
centers is data-driven. This results in a more reasonable hash
code center. In summary, the two key strategies employed by

our CIAH, i.e., IAM and centripetal loss, jointly contribute to
achieve very competitive retrieval performance.

3) Assessment Through Precision–Recall Curves: The
precision–recall curves for the four RS datasets with IF D
0.05 and a hash code length of 32 bits are displayed in
Figs. 7–10. Concretely, Figs. 7(a), 8(a), 9(a), and 10(a) provide
the number of retrieval results returned (horizontal coordinate)
and the recall (vertical coordinate). It reflects the percentage
of correct samples recalled as the number of query results
increases. The curve tends to be upward. Figs. 7(b), 8(b),
9(b), and 10(b) have the same horizontal coordinate of the
number of retrieved results returned and the vertical coordinate
of the precision. Moreover, it reflects the evolution of the
precision as the number of query results increases. The curve
usually trends downward. Lastly, Figs. 7(c), 8(c), 9(c), and
10(c) have the horizontal coordinate of recall and the vertical
coordinate of precision. They reflect the relationship between
recall and precision, which generally tends to be decreasing.
The area enclosed by the precision recall curve and the axes
are proportional to the retrieval performance. For a better
visual presentation, some of the subfigures have been zoomed.

According to Figs. 7 and 9, the advantage of our CIAH
is not evident in this context, which can be attributed to
the scarcity of training samples for RSSCN7. This leads to
an under-fitting profile during the training process. Further-
more, the PatternNet dataset consists of meticulously selected
samples, each of which with the characteristic appearance of
the class and not prone to hard identification. Fortunately,
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